The Essential Role of Photosynthesis in Defining Net Zero Carbon Dioxide 1 **Emissions for Equilibrium Calculations** 2 3 Dave White, Chemical Engineer Climate Change Truth Inc. research@cctruth.org corresponding author 4 Keywords: Photosynthesis, carbon dioxide increase, carbon dioxide scavenging, climate 5 change, Amazon Rainforest 6 7 ABSTRACT 8 In this research manuscript, the authors seek to answer four essential questions relative to the current climate change conversation now underway globally: (Q1) What is the numerically defined goal for 9 10 annual Net Zero Carbon Dioxide Emissions in gigatonnes essential for global atmospheric homeostasis? 11 (Q2) Why is atmospheric CO₂ rising even though recent data support that CO₂ emissions have the rate of 12 rise lowered by 50% since 2014 globally? (Q3) Are CO_2 cap and trade policies the best immediate 13 intervention, or does globally increasing photosynthesis offer a more rapid and better long-term 14 solution to climate change? (Q4) What strategies can be employed to have the greatest positive impact 15 over the upcoming crucial twelve-year period? 16 17 Nothing absorbs carbon dioxide out of our atmosphere like photosynthesis, and therein lies the most 18 under-discussed solution to the greatest problem of our time. A single hectare of healthy Amazon Rainforest can sequester up to 100 tons of CO_2yr^{-1} due to photosynthesis. And the fast-growing Empress 19 20 Tree (Paulownia tomentosa) not only grows ten to twenty feet tall in its first year, but a single hectare of 21 these trees can sequester up to 103 tons of CO_2yr^{-1} due to photosynthesis (Emily Chasan 2019). 22 23 Prior to the Industrial Revolution and long before global deforestation devastated Earth's delicate 24 atmospheric ecosystem, forests around the world are estimated to have consumed up to 400 billion 25 tons of CO₂yr⁻¹. As of 2019, that has been reduced dramatically as global forests consume less than 10 billion tons of CO₂yr⁻¹ with photosynthesis (Max Roser 2015). 26 27

1

29	Significance Statement
30	The vast majority of climate experts agree that there has been a five-times increase in \ensuremath{CO}_2
31	emissions due to human related factors since 1870. While fossil fuel carbon have been
32	confirmed to be approximately seven gigatons annually and does weigh in the climate
33	change discussion, during this same period the photosynthetic consumption of carbon dioxide
34	has been reduced by more than 97% due to incessant global deforestation. Historical forestry
35	records indicate that prior to the 1900's, annual worldwide carbon dioxide consumption was
36	estimated to have been around 400 gigatons due to photosynthesis. However, as of 2019,
37	calculated estimates now have annual carbon dioxide consumption due to photosynthesis
38	below ten gigatons.
39	
40 41 42	(Q1) What Is the Numerical Goal for Annual Net Zero Carbon Emissions? (Net Zero CO2e)
43	As a result of the global reduction in forest size, there has been a corresponding loss in photosynthesis
44	and the natural carbon dioxide sequestration it creates. Estimates for global carbon dioxide
45	sequestration have fallen from a minimum of 400 gigatons (healthy rain-forests and other forests)
46	circa 1700 to as little as 10-12 gigatons annually, far below what is required to maintain global
47	atmospheric homeostasis (Christine L. Goodale et al. 2002). The total photosynthesis in the Northern
48	hemisphere is less than 0.7 gtCyr ⁻¹ (2.57 gtCO ₂ yr ⁻¹) (Christine L. Goodale et al. 2002).
49	
50	Currently, the burning of fossil fuels releases approximately (total worldwide CO_2 emissions) 36.8
51	gigatons of carbon dioxide each year. In order for humanity to restore the global atmospheric
52	homeostasis essential for life, we must aggressively plant trees and regrow our beleaguered forests as
53	the foundation of any comprehensive strategy for reversing climate change. Deforesting has resulted
54	in a massive global loss of carbon dioxide sequestration of more than 390 gigatons per year,
55	that is simply no longer sustainable. Thus, we submit that the most pressing issue facing
56	humanity in our climate change battle is not carbon dioxide emissions but, rather, the inability

to absorb the carbon dioxide currently stranded in the atmosphere due to

58 the significant reduction in photosynthesis.

59

60 Our forests are the lungs of our planet. Without them, we simply cannot breathe. The logic of the current climate science theory is based on the hypothesis that we can stop the 61 dramatic shifts in weather patterns that threaten all life by achieving global atmospheric 62 63 equilibrium as we remove excess carbon dioxide from the atmosphere. However, a major problem in this discussion of atmospheric equilibrium is that the phrase Net Zero Carbon 64 65 Emissions (Net Zero CO_2e) has not been defined. What number, in gigatons, is the target 66 goal that would give us atmospheric equilibrium? How much carbon dioxide needs to be 67 consumed annually to get to the Net Zero CO₂e target goal?

68

69 Productive scientific communication for the development of a unified global solution to the 70 greatest challenge in human history depends on scientific data that have been reviewed and 71 scrutinized for accuracy before agreement can be reached. In today's climate change 72 conversations, some climate change scientists have suggested that the Net Zero CO₂e target 73 goal is zero, meaning that every year we would need to absorb 36.8 gigatons of CO₂. Others 74 simply use the term Net Zero CO₂e without having any numerical idea of what the target goal is 75 and thus how much carbon dioxide will need to be removed from the atmosphere each year in order to achieve equilibrium. 76

77

The definition of Net Zero CO₂e is, therefore, crucial to establishing a foundation for the entire
climate change scientific community before it can develop practical strategies designed to
stalemate the progression of the rise of atmospheric carbon dioxide and ultimately reverse its
threatening course.

82

83 The author has calculated the Net Zero CO₂e to be 8.6 gigatons per year, and this

research article will demonstrate in detail how that number was determined with data sets
available in "References." As of 2019, the estimated global emission of carbon dioxide stands
at 35.5 gigatons. Therefore, a Net Zero CO₂e of 8.6 gigatons means that in order for us to
achieve atmospheric equilibrium and global environmental homeostasis, we must re-establish
our ability to sequester 26.9 gigatons (26.9 billion tons) of CO₂ directly from the atmosphere
each year.

Global reforestation is much more cost effective, time effective, and rapidly attainable than relying on industry and individual governments to curtail their pursuit of control and market share. After all, what is easier to do? (A) Plant trees, as Ethiopia has done with 350 million new saplings planted in twelve hours (NOAA weekly 2020), or (B) Reduce emissions of carbon dioxide, which has not worked to lower atmospheric carbon dioxide in the past. Additionally reducing emissions won't work for the future because the average residence time for carbon dioxide in the future is 150 years (Schwartz, 2018).

97

Logic dictates that with a global catastrophe facing all humanity, now is the time for action
with proven, natural, and trusted mechanisms for restoring global atmospheric equilibrium.

101 102

The Photosynthesis Equation

103 Photosynthesis is the biological process by which the plant cell organelle, known as a chloroplast, is able to "change" carbon dioxide into glucose to support its production of energy 104 105 (ATP) for cellular function, including the replicated biotransformation of CO_2 into glucose. 106 Carbon dioxide is literally the preferred fuel source for all plant life. With an abundance of it 107 stranded in our atmosphere, there is more than enough fuel to support mass global 108 reforestation. Here is the biochemical equation for photosynthetic sequestration of carbon 109 dioxide from the atmosphere for your reference: $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \lambda \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$ How Is Annual CO₂ Consumption Lost Due to Lost Photosynthesis? 110 1. Globally, we lose at least 1 gigaton of CO₂ consumption annually due to city 111

113 114		expansion into previously undeveloped lands. (Calculated by worldwide cities over 200k
115		people Ha squared)
116		
117	2.	The IPPC Forestry Group estimates we lose 2-3 gigatons of CO ₂ consumption annually
118		from bio-mass burning due to forest fires, which evolutes forest clearing for animal
120		nom bio-mass burning due to forest mes, which excludes forest clearing for animal
121		agriculture and wood commodity production.
122		
123	3.	Deforestation for animal agriculture and wood commodities in the Amazon Rainforest
124		
125		alone accounts for a minimal loss of 90 gt of CO_2 consumption annually (Brienen, R. et
120		al. 2015).
128	Accord	ding to the IPCC SR 1.5, the minimum carbon dioxide sequestration required is 45% of
129 130	humar to 20 (n carbon dioxide emissions by 2030 (Rogelj, J et al. 2018). This reduces our CO ₂ emissions $GtCO_2$ yr ⁻¹ in agreement with the statement of 25–30 $GtCO_2e$ yr ⁻¹ in chapter
131	2 of SF	R 1.5 However, there exists no reference to where the 25-30 GT CO $_2$ e yr $^{-1}$ data came
132 133 134	from. years by 14	Planting two trees every year for every man, woman, and child on Earth each year for ten will increase carbon sequestration from Earth's atmosphere by 1.4 gigatons each year and gigatons per year by the end of the first decade (see Northern Hemisphere Forest
135	Photo	synthesis below for explanation). We calculated the current worldwide photosynthesis
136	from la	and and ocean surface, and it is 8.6 GtCO ₂ e yr ⁻¹ . Additionally, the total oxygen
137 138 139	produ	ced is 17.74 Gt yr ⁻¹ (E. Kintisch, 2017). Oxygen levels are declining. The "natural" carbon
140 141	dioxid	e emissions are above the fossil fuel emissions. A 45% cut in human emissions will bring
142	us to 2	20 Gt yr ⁻¹ and not to equilibrium. Following are the calculations for the Northern and
143	South	ern Hemispheres.
144		Forest Photosynthesis
145		Northern hemisphere
146	Total f	orest hectares in the Northern Hemisphere are about 2050 million (CHRISTINE L.
147	GOOD	ALE et al. 2002). There are no rainforests in the NH like the Amazon Rainforest. The

148	total photosynthesis in the Northern Hemisphere is less than 0.7 GTCyr ⁻¹ (2.57 GTCO ₂ yr ⁻¹)
149	(CHRISTINE L. GOODALE et al. 2002). Increased biomass from the Earth warming and higher
150	troposphere carbon dioxide concentrations do not produce enough photosynthesis to offset
151	the massive deforestation around the globe. This is not what lowers the oscillation at Mauna
152	Loa during the Northern Hemisphere summer.
153	Forest Photosynthesis
154	Southern Hemisphere
155	
156	The Southern Hemisphere (SH) has much less land than the Northern Hemisphere, but it does
157	have rainforests. Unfortunately, the Amazon Rainforest has switched to become a massive
158	CO ₂ producer and oxygen sink (D. White, 2019), (Max Roser 2015), (Robert Scribbler 2020).
159	Because decay ingests oxygen and emits carbon dioxide, the decay contribution from the
160 161	Amazon Rainforest is now ten to fifteen billion more tons of CO_2 annually with a corresponding loss of oxygen. This is from a conservative calculation of five tons of decay per acre per year.
162	Other research papers show that all tropical forests in the SH have switched to become oxygen
163	sinks and carbon dioxide producers. One such paper from A. Baccini et al. shows this clearly (A.
164	Baccini Et al. 2017).

Figure 1. Most southern hemisphere tropical forests have switched to be an oxygen sink and 168 169 170 carbon dioxide producer. Annual net change (95% confidence interval) in total carbon. Red 171 lines indicate a loss in carbon; green lines indicate a gain. Blue lines reflect the difference 172 173 between losses and gains. The vertical bars indicate the standard error of the change value. (A. 174 175 Baccini Et al. 2017) 176 177 In 2009, the tropical forests in the SH started to switch to oxygen sinks and carbon dioxide 178 emitters due to organic decay. Anthropogenic forest degradation and biomass burning (forest 179

180 fires and agricultural burning) also represent relevant contributions. The decay from the over

181 two billion acres remaining of the Amazon Rainforest cancels out any other land- and ocean-

182 based photosynthesis in the SH (see ocean photosynthesis below). This is because of its

switching to an oxygen sink and carbon dioxide emitter (see figure 2 below and the massive carbon dioxide release from the Amazon--the white arrow points to this area) (Takahashi, Taro et al. 2008).

All tropical forests in the southern hemisphere have switched to be an oxygen sink and carbon dioxide producer due to organic decay (Takahashi, Taro et al. 2008). Certainly, if the Amazon had not switched, then the carbon dioxide around it would have a much lower concentration. Up to 90 gigatons (90 billion tons) CO_2 consumption is lost annually from Amazon Rainforest switching, 2.5 times our carbon dioxide emissions at 35.1 gtCO₂yr⁻¹. The worldwide massive deforestation is why the average residence time of atmospheric carbon dioxide is increasing.

declining photosynthesis and ocean outgassing produced is 17.74 GTO₂ yr⁻¹.

- 206
- 207

208

Figure 3. Worldwide Oxygen Budget (Jianping Huang et al 2018)

209

210 (Q2) Why is atmospheric CO₂ rising even though recent data support that CO₂ emissions have the rate of rise lowered by 50% since 2014 globally? 211

212 The logical reason that atmospheric CO_2 continues to rise in spite of CO_2 emissions rate of rise

decreasing in half globally (see Figure 7) is that we do not have enough trees (primarily due to 213

- 214 deforestation) to photo synthetically reabsorb carbon dioxide from the atmosphere.
- 215 Additionally, the minimum residence time of atmospheric carbon dioxide is increasing (IPCC
- WG I 2003). As a result, the carbon that is still being emitted from all sources remains in the 216
- atmosphere and accumulates as a result of the 26.9 gigatons sequestering deficit gap. As 217
- 218 countries like China, India, Pakistan, and Ethiopia have learned, our future is dependent upon
- 219 trees and our ability to redevelop nature's carbon dioxide sinks. Reforesting our planet can

substantially increase global photosynthesis to first meet, and then exceed, the 28.2 gigatons

that must be absorbed annually and buy us the time we need to address the myriad,

222 additional companion issues like ocean clean-up, animal agriculture, and biodegradable plastic

223 solutions.

224

225 Atmospheric carbon dioxide concentration is still increasing even though the emissions slope

has decreased 60% (see Graph 2). Additionally, the rate of rise of atmospheric CO₂ is still

increasing (see Graph 6). This confirms no effect on atmospheric CO₂ rise by slowing emissions.

	Human CO ₂ Emissions vs. Atmospheric Concentration
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
229 230 231	Graph 2. (D. White 2020)
232	
233	Atmospheric CO ₂ is a binary system statistically [6,18]. Two causes are CO ₂ emissions and loss
234	
235	of photosynthesis. Each cause is multivariate. We have had mostly flat human emissions (0.3
236	
237	GT/yr vs. 0.6 GT/yr) since 2014 (see Graph 2). However, atmospheric CO_2 is still going up and
238	
239	the rate of rise is increasing (Graph 8). In 2018, the Rxy correlation coefficient was 0.73 and
240	
241	not cause and effect. In 2021 it is now 0.63. The main author performed regression by target
	10

- and CO₂ emissions correlate to 363 ppm of the rise in atmospheric carbon dioxide since 1950.
- 245 (D. White, 2019).

Pearson's Regre	ssion by Target f	or CO ₂ emissions (all)
Target <mark>(</mark> ppm)	Rxy	Comment
340	0.93	
350	0.928078	
360	0.98	
370	0.970839	
380	0.914433	
411	0.72	
415	0.64	2019 Value

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

http://cctruth.org/regression.xlxs

254	Table 1 shows Pearson's regression by target starting at the inflection point (1950).
255	Natural and human carbon dioxide emissions correlate to 363 ppm and are a contributor but
256	
257	not the cause of the rise of atmospheric carbon dioxide since 1957.
258	Oxygen Levels
259 260	Since the oxygen levels are decreasing, the photosynthesis must be less than that decrease (see Graph 1). The total worldwide oxygen needed is 39 Gt yr ⁻¹ (see Figure 3). The oxygen from
261	declining photosynthesis and ocean outgassing produced is 17.74 GTO ₂ yr ⁻¹ .
262	
263	Effective CO ₂ Emissions
264	Effective CO_2 emissions are emissions per year after subtracting the total photosynthesis
265	consumption for the year. For example, the worldwide emissions for 2018 are 37.1 GT. The
266	worldwide photosynthesis is 9.2 GT. Thus, the effective emissions would be 27.9
267	GT. Calculating it this way tells the actual effect. Instead of the emissions effect being at 135
268	ppm of atmospheric CO ₂ , it would be 81 ppm from Effective CO ₂ Emissions (ECE). This
269	correlates well with total emissions effect at 363 ppm.
270	

Graph 4. Rain forest deforestation vs. Atmospheric CO₂ rise.(D. White 2020)

Graph 5. Mauna Loa cycles. (NOAA gr 2020)

277

278

The oscillation at Mauna Loa starts as a very strong signal in South America and then fans out 280 281 larger and larger until Barrow's Alaska. The countries in South America burn the Amazon 282 Rainforest, the densest forest in the world, from October/November through May of the next year. Since 1950, an average of 30 million acres per year have been deforested and burned. 283 284 So much CO_2 has been released that the trees and plants have grown too fast and died. This 285 massive decay is what caused the Amazon Rainforest to switch to an oxygen sink and carbon dioxide producer. Hundreds of manuscripts have been published on this. Currently, the 286 287 Amazon output is 15 GTyr⁻¹ of CO₂. The switching of the Amazon Rainforest is a 0.99 cause and effect correlation to the rise in atmospheric carbon dioxide and loss of oxygen since 1957. The 288 289 oscillation at Mauna Loa increases during the seven months of the deforestation and burning 290 in South America's spring and summer (see figure 4). Then at the end of May, the 291 deforestation stops, and the Mauna Loa carbon dioxide data recede.

292

Figure 4. Amazon Rainforest burning (Kenzie Mastroe 2019)

Graph 6. Mauna Loa CO₂ Rate of Rise (NOAA gr 2020)

leveled off (see graph 6). All countries have lowered their carbon dioxide emissions except
China and India (see figure 5). All pollutants are measured by mass and should be reported as
such, not reported per capita. China is the worst polluter of carbon dioxide and has not
reduced any emissions. The USA has been decreasing its CO₂ emissions since 2006, and
Europe has been decreasing since 1990.
USA 2006: 6131 MtCO₂ and in 2018: 5270 MtCO₂ --a 15% decrease of carbon dioxide.
Europe 1990: 4479 MtCO₂ and in 2018: 3544 MtCO₂ --a 21% decrease of carbon dioxide.

310

Ocean Photosynthesis

The oceans in the NH are currently producing six billion tons of photosynthesis consumption of 311 carbon dioxide (Natalya Gallo 2014). This decline is for many reasons. However, if the oceans 312 are a pump, the area without CO₂ is similar to the area with CO₂ (see figure 6). Therefore, the 313 output and the input cancel each other. Ocean photosynthesis is declining because of a 314 315 lowering of pH (Natalya Gallo 2014). Excess carbon dioxide in the oceans disassociate to 316 carbonate ions. This causes less carbon dioxide available for photosynthesis. The oceans out 317 gassing of oxygen is 1.74 gtyr-1 (see figure 3). Photosynthesis is 1:1 carbon to oxygen. 318 Therefore, the total worldwide ocean consumption of carbon dioxide is 1.74 gtyr-1

- 319
- 320

Cruise Ship Effect

321 In 2017, 25 million passengers traveled on cruise ships. The ships with on-board sewage 322 treatment plants are so few that their effect is negligible. Thus, with the average cruise lasting seven days, the total passenger days were 175 million (2017 data). Because people on cruise 323 324 ships tend to eat more than usual, the wet weight of feces per person is maximum, at 1.5 kg 325 (C. Rose, et al 2015). The excrement is 30% dry weight. Therefore, the mass is .3*1.5=0.45 kg. Each passenger contributes a little over 0.45 kg of solid waste per day. Therefore, there were 326 327 79,000 tons of solid waste in 2017. Most of this is long-chained hydrocarbons with 50 -125 328 carbons each. These will be converted to CO₂ by the decay process. For CO₂ the molecular 329 weight is 36 and carbon is 4. Thus, the weight increases by nine for each carbon

converted. Consequently, 73 million tons of CO₂ were added from cruise ships in 2017. Since
1990, the decay of human waste dumped into the oceans from cruise ships, based on the
reported number of passengers each year, has resulted in a total of 1.1 billion metric tons of
carbon dioxide in the oceans. This decay over forty years has removed oxygen and produced
carbon dioxide in the oceans.

335

If all the cruise ships were made to offload their passengers' waste products at ports and the rivers were cleaned of their pollution (e.g. the Petite Nèthe River near Antwerpen, polluted with horse manure), the ocean CO₂ would decrease. Only one port on the west coast of the USA has a facility to treat passengers' waste products, but no one is utilizing it. This port is in San Francisco. I called the person in charge and she said no vessel uses the facility to offload human waste. She also said most ships dump as soon as they get out of the harbor.

357	
358	Rousseaux et al 2015).
359	
360	Diffusion of CO ₂ in the Troposphere
362 363	Greenhouse gases, like all gases, diffuse until they are equidistant to each other at any given
364 365	pressure and temperature combination. At STP (Standard Temperature and Pressure, 25C, 1
366 367	Atmosphere), CO ₂ has the following diffusion coefficients:
368 369	In air: 16 mm²/s
370 371	In water: 0.0016 mm²/s (D. White 2020)
372	CO_2 is more likely to diffuse in the air than in the ocean (D. White 2020). The diffusion length
373	in air (bulk troposphere) is 2 cm per month toward the exosphere (D. White 2020), (Ficks
374	diffusion 2018). The ocean-air interface diffusion is 14.8 cm per day in the direction of the
375	atmosphere. The driving force for diffusion is much greater in the direction of the exosphere
376	(Machida et aL. 2002). Flux = 2 cm per month towards the exosphere (Ficks diffusion 2018).
377 378	Eddy Diffusion and mixing of the atmosphere are stronger drivers for transport of CO_2 to
379 380	higher altitudes (Hans R. Schneider et al. 1989). The flux direction is correct. The flux number may or may not be correct.
381	This is because of varying pressures and temperatures from the troposphere to the exosphere.
382	In the future, I will perform a rigorous calculation to determine the accurate flux number. $\ CO_2$
383	that goes into the ocean is from any disturbance of ocean surface (e.g. hurricanes) that allows
384	CO_2 to enter the ocean (Takahashi, Taro et al. 2008). Most of the ocean's surface is at standard
385	temperature and pressure at any time. Furthermore, the atmospheric winds distribute carbon
386	dioxide evenly by latitude (see Graph 7 below). Except for temperature effect, every latitude
387	has an equal chance to diffuse into the ocean. However, the concentrations in the flux graph
388	are not close to what diffusion principles would indicate (see Figure 6 above). Takahashi et al.
389	show southern hemisphere rates of change of ocean pCO_2 (see Table 3). If this were from

- 390 diffusion flux, we would naturally expect the flux rate to be larger toward the equator and
- 391 smaller toward the south pole. Figure 8 shows no such dependency. The top row is closest to
- 392 the south pole and it shows the highest rate!
- 393
- 394
- 395

Figure 7. Mauna Loa CO2 rise since 1960. (9/24/2021)

401

403

404

Graph 7. CO_2 mixed by atmospheric winds. (D. White, P. Tans (NOAA) 2017)

$$J = -D \cdot \frac{dc(x)}{dx}$$
 (Unit: D: cm²/sec; J: number/cm²/sec)

Figure 8. Ficks First Law (Welty et al, 1984)

Locations	Lat.	Long.	Data period	Rate of change		No. of MOS.	Rate of change	
				pCO ₂ @SST (µatm y ⁻¹)	±σ (µatmy ¹)		SST ("C y ")	± <i>σ</i> (℃y ⁻¹)
Tahiti	15-20°S	135-145°W	11974-1997	2.00	0.39	16	0.033	0.034
Vanuata	20-25°S	165-175°E	1984-2006	1.30	0.27	35	-0.048	0.018
New Caledonia	25-30°S	170-180°W	1974-2005	1.05	0.09	17	-0.033	0.020
Tasmania	43-48°S	140-150 E	1984-2004	1.83	0.56	18	-0.051	0.062
New Zealand	45-50°S	170-180°E	1974-2006	1.42	0.30	37	0.001	0.027
S. of Tasmania	50-55°S	140-150°E	1984-2002	1.61	0.20	12	-0.044	0.064
Mean				1.5±0.3	0.30	-	-0.02 ± 0.05	0.04

Table 3. Diffusion by latitude in SH (Takahashi, Taro et al. 2008)

Worldwide

The total worldwide consumption of carbon dioxide is 2.6 (NH) +6(NH ocean) = 8.6 gigatonnes 410 411 per year. Therefore, we cannot lower atmospheric carbon dioxide by working on emissions. It 412 is a waste of resources because emissions are not the primary cause. Logically, 90% of human 413 carbon dioxide emissions are from the NH (see Figure 9). The Mauna Loa carbon dioxide data 414 peak in May each year, and then decline until rising again in November (see Figure 10). The 415 greater economic activity during the summertime in the NH produces greater amounts of 416 carbon dioxide emissions. Then, in the fall each year, when there is less activity and it is not 417 cold yet, emissions decrease. In November, the temperature drops in the NH, and more fossil fuel for heating is consumed. This increases the carbon dioxide emissions. In April, it starts 418 warming and carbon dioxide emissions decline (see graph 8). However, the Mauna Loa carbon 419 420 dioxide data show that concentration decreases during the same time that human emissions 421 increase in the summer. Furthermore, the total photosynthesis in the NH forests is 2.6 422 gigatonnes per year. 423

424

405 406

407 408

Figure 10. Mauna Loa oscillation. (NOAA weekly 2020)

461 emissions has not and will not have any effect on atmospheric CO₂ for hundreds of
462
463 years.

Below is a copy of the data I collected on residence time (Table 2) based on the summary of
Schwartz et al. of fifteen other manuscripts [35), and the constraints I used (Graph 9). Even at a
residence time of 100 years, Mauna Loa CO₂ never stays low. This is because we have a
massive loss of photosynthesis consumption.

468 Facts

469

470 Residence time was once five years; now it is more than 200 years. If anyone were to take a survey at a climate change conference and ask the question, "What is the current residence 471 472 time of atmospheric CO₂?" most scientists would say somewhere between 200 and 400 years. In my presentation at a conference, I said it was 500 years and no scientist questioned it. Another way to 473 look at residence time is a signature from past events, which lowered CO₂ emissions. For 474 475 example the oil embargo in the 1970's, multiple recessions and the big worldwide recession in 2009. The current COVID-19 pandemic. These are examples of lowered worldwide emissions. 476 Below is the current graph of Mauna Loa CO2. You can clearly see no signature from these 477 478 events. 479

Residence Time (Years)	Author	Year
700	Allen	2009
610	Zickfeld	2013
500	Matthews	2008
300	Plattner	2008
270	Сао	2010
230	Zickfeld	2012
220	Solomon	2012
220	Knutti	2012
210	Gillett	2011
180	Frolicher	2010
150	Hare	2006

480

Table 2. Published papers stating atmospheric CO₂ residence time (Schwartz, 2018).

482	We have an experiment on US 26 eastbound just west of Portland, Oregon. A permit obtained from
483	Oregon Department of Transportation. These sensors are NIST certified and calibrated within one part
484	per million. Graph 9 shows the rate of rise of atmospheric carbon dioxide less than 3 ppm/yr. The blue
485	line represents the difference between the treed area and a non-treed area. Each location has a wind
486	directional measurement. This measurement can confirm bad data from crosswind for example. This
487	experiment proves we can plant native shrubs and trees by roads and freeways instead of grass. This
488	freeway has 161,000 autos per day on it, and approximately 460 auto exit (Sylvan exit 71) per day
489 490	between the two sensor locations. The final day of testing was 6/12/2021.
491	Procedure:
492	Place sensors at 6am daily for two weeks every other month for one year.
493 494	Pick up sensors at 7pm and analyze the data.
495 496	Put SD memory card from sensor into computer.
497 498	Import the data into an Excel spreadsheet named "data"
499 500	Repeat for other sensor.
501 502	For each 10 seconds subtract the treed area from the non-tree area.
503 504	Sort data for "smallest to largest" from subtraction result.
505 506	Remove negative numbers in the subtraction result.
507 508	The negative numbers are from wind gusts. We tracked this many times.
509 510	Calculate average for the day.
511 512	Repeat.
513	Things to note in the graph. At no time did the blue line go below the red line. On December 20 th , a very
514	dark and rainy day the difference was 9 ppm. In April through June we had very little rain. The graph

- shows this as lower difference. For photosynthesis we need these things, light, vegetation, moisture and
- 516 carbon dioxide. Experiment Summary: This experiment proves we can plant native trees and shrubs
- 517 instead of grass and they will eventually consume all the carbon dioxide from the vehicles. This is
- 518 applicable for $\pm 50^{\circ}$ from the equator.

- 519 520 521
- 522 Atmospheric CO_2 is "extra," meaning that it is not consumed by photosynthesis.
- 523 Assumptions
- 524 Constraints for Graph 10 below:
- 525
- 526 45% reduction in fossil fuel CO₂ emissions by 2030;
- 527
- 528 55% reduction in fossil fuel CO_2 emissions by 2130 due to depletion of those fuels;
- 529
- 530 By 2030, 45% reduction in the rate of rise of atmospheric CO_2 .
- 531
- 532 By 2130, 45% reduction in CO₂ concentration
- 533 2230 55% reduction in CO_2 concentration and rate.

atmospheric CO_2 is still rising even faster although the CO_2 emissions rise has slowed by 50%. 560 Question 4 is answered here. We showed how cap and trade policies would have zero effect on 561 562 the rise of atmospheric carbon dioxide because the equilibrium point is too low. The strategy 563 with the most positive effect on lowering atmospheric CO_2 is by increasing photosynthesis. This will in turn increase the equilibrium point to over 100 GTyr⁻¹. The only way to lower 564 565 atmospheric carbon dioxide is to increase photosynthesis. The correct solution is to stop nonsustainable deforestation of large rainforests (such as those in India and the Amazon River 566 567 Basin and its tributaries) and to plant 200 billion native trees and shrubs, especially in those 568 areas that have been deforested. This will cause atmospheric CO_2 to lower to 330 ppm by 2031 (see Graph 11). Use ecosia.org for internet search engine. Ecosia.org plants trees. 569 570

571 Dr. Tom Crowther (Crowther et al. 2019) published a paper on increasing photosynthesis with recommendations of where to plant. The study found that most of the land suitable for 572 restoring forests is in six countries: Russia (151 million hectares), USA (103 million hectares), 573 574 Canada (78 million), Australia (58 million), Brazil (50 million), and China (40 million). Appendix 1 shows how to plant the trees and shrubs. This will increase consumption of CO₂ to over 100 Gt 575 yr⁻¹. Not every forest hectare is equivalent in photosynthesis consumption of CO₂. Rainforests 576 577 consume 90-100 tons per hectare of carbon dioxide per annum. Other forests are from one quarter to 8 tons per hectare per annum. 578

579

581	
582	Graph 11. Increasing Photosynthesis Effect (D. White 2020)
583	
584	
585	Acknowledgments
586	This research article has received no funding from any outside sources. All work performed by
587	the authors has been done without any compensation. The goal of Climate Change Truth, Inc.
588	Is to follow the data. The goal of The Energetic Health Institute Is to share Information from the
589	heart for the betterment of all.
590	Data Availability Statement
591	Data will be available in the link provided. https://www.ncei.noaa.gov/
592	Conflict of Interest Statement
593	The authors have no conflict of interest that we are aware of.
594	Appendix 1.
595	Ideas on How to Plant Trees and Shrubs
596	Following is a government policy guide to lower atmospheric carbon dioxide quickly.
597	We can keep emissions at 37 Gt yr ⁻¹ without any new reduction plans. A refocus on planting trees and
598	shrubs is what is required. Native plants that produce oxygen year-round are preferred.
599 600	1. Put pressure on Brazil and other Amazon Rainforest countries to stop deforestation as
601	soon as possible. Stop the biomass burning that puts 300 million tons of carbon dioxide
602 603	into the atmosphere each year, which causes the switching of the rainforest to an
604	
605 606	oxygen sink and CO_2 producer. This switching caused the recent rise in atmospheric
607 608	carbon dioxide concentration of 53 ppm (D. White, 2019). Then, after ten years, finish
609	burning what is needed at 10% per year for ten years.
610 611	2. Provide space where the public can come and plant trees and shrubs on government
612	

613		-owned lands. The cost would be minimal. A website could be created to document
614		
615		each planting area.
616	_	
617	3.	Plant shrubs in all freeway medians and sides. This would pay for itself within two years
618		
619		because of lower maintenance costs. Plant native shrubs at a minimal spacing so all
620		
621		light is used in photosynthesis. This will take in 1 ton of CO ₂ emissions per acre per year
622		wight at the second of cute ancience. The space would get good to be previous even.
623		right at the source of auto emissions. The space would not need to be mowed every
624 625		week in the summer
625		week in the summer.
620	4	Cat schools involved to plant massive numbers of tracs and shrubs on their property
620	4.	Get schools involved to plant massive numbers of trees and shrubs on their property
620		and an government property as in 1 above
620		
631	5	Add trees and shrups to parks
632	5.	
633	6	Give tax incentives for businesses to plant trees and shrubs. People can plant shrubs on
634	01	
635		roofs which can structurally handle dirt with minimal spacing and drip irrigation.
636		
637		creating "green roofs."
638		
639	7.	Attend to wildfires quickly. Get a retainer for a jet plane to use from the start of any
640		
641		wildfire.
642		
643	When we do th	ese things worldwide, we will increase carbon dioxide consumption by 2-3 billion tons
644		
645	per year (not in	cluding the effects of rainforest renewal, which eventually will consume 60-100 Gt yr $^{-1}$).
646	All embassy en	vironmental scientists have concurred with this science and have encouraged their
647	, -	
648	countries to pla	ant trees. China is planting millions of trees. India stopped deforestation of its rainforest
649		
650	and is planting	trees . Pakistan has already planted 4 billion trees and will plant seven billion more in the
651	1 0	
652	next four years	. Since May 2018, these countries have planted more than 4 billion trees.
653		
654		References

655	2017 data http://www.repositioncruises.com/cruise-industry/#statistics			
656 657 658 659	A. Baccini Et al. 2017 Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 13 Oct 2017: Vol. 358, Issue 6360, pp. 230-234 DOI: 10.1126/science.aam5962			
660 661 662	Brienen, R. <i>et al.</i> 2015 Long-term decline of the Amazon carbon sink. <i>Nature</i> 519, 344–348 (2015). <u>https://doi.org/10.1038/nature14283</u>			
663 664 665	Emily Chasan 2019 "We Already Have The World's Most Efficient Carbon Capture Technology"			
666	 Bloomberg Businessweek August 2019. <u>https://www.bloomberg.com/news/features/2019</u> 22 (we already have the world a most afficient earlier control to the place) 			
668	02/we-aiready-nave-the-world-s-most-efficient-carbon-capture-technology			
669 670	Crowther et al. 2019 Science 05 Jul 2019: Vol. 365, Issue 6448, pp. 76-79 DOI: 10.1126/science.aax0848			
671				
672 673 674	D. White, 2019 Discovery: Reduction in Photosynthesis Correlation to Carbon Dioxide Increase, ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 3 Issue 4 April 2019 https://actascientific.com/ASAG/pdf/ASAG-03-0393.pdf			
	nttps://actascientinc.com/ASAd/pul/ASAd/03/0395.pul			
675				
675 676	D. White 2020 Statistical regression			
675 676 677 678	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx			
675 676 677 678 679	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record"			
675 676 677 678 679 680 681	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record" United Nations Environment August 2019. https://www.unenvironment.org/news-and- stories/story/ethiopia-plants-over-350-million-trees-day-setting-new-world-record			
675 676 677 678 679 680 681 682	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record" United Nations Environment August 2019. https://www.unenvironment.org/news-and- stories/story/ethiopia-plants-over-350-million-trees-day-setting-new-world-record			
675 676 677 678 679 680 681 682 683	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record" United Nations Environment August 2019. https://www.unenvironment.org/news-and- stories/story/ethiopia-plants-over-350-million-trees-day-setting-new-world-record Ficks diffusion 2018 http://cctruth.org/Ficks%20diffusion.pdf			
675 676 677 678 679 680 681 682 683 684	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record" United Nations Environment August 2019. https://www.unenvironment.org/news-and- stories/story/ethiopia-plants-over-350-million-trees-day-setting-new-world-record Ficks diffusion 2018 http://cctruth.org/Ficks%20diffusion.pdf			
675 676 677 678 679 680 681 682 683 684 685	D. White 2020 Statistical regression https://issues.pangaea.de/secure/attachment/142070/regression.xlsx Ethiopia 2019 Ethiopia Plants Over 350 Million Tress In A Day, Setting New World Record" United Nations Environment August 2019. <u>https://www.unenvironment.org/news-and-</u> stories/story/ethiopia-plants-over-350-million-trees-day-setting-new-world-record Ficks diffusion 2018 <u>http://cctruth.org/Ficks%20diffusion.pdf</u> Flight Center, Greenbelt, 5 Maryland, USA			

687 688 689	Natalya Gallo 2014 Ocean Deoxygenation <u>http://oceanscientists.org/index.php/topics/ocean-</u>		
690	deoxygenation		
691	Global Carbon Atlas 2020 http://www.globalcarbonatlas.org/en/CO2-emissions		
692 693 694 695	CHRISTINE L. GOODALE et al. 2002 FOREST CARBON SINKS IN THE NORTHERN HEMISPHERE, Ecological Applications, 12(3), 2002, pp. 891–899 q 2002 by the Ecological Society of America <u>http://www.eeb.cornell.edu/goodale/2002%20GoodaleEcolAppl.pdf</u>		
696			
697	Jianping Huang et al 2018 The global oxygen budget and its future projection		
698	https://www.sciencedirect.com/science/article/pii/S209592731830375X		
699			
700	IPCC WG I 2003 https://archive.ipcc.ch/ipccreports/tar/wg1/016.htm		
701			
702	E. Kintisch, 2017 Amazon rainforest ability to soak up carbon dioxide is falling,		
703	doi:10.1126/science.aab0336, http://www.sciencemag.org/news/2015/03/amazon-rainforest		
704	ability-soak-carbon-dioxide-falling, 2017		
705			
706	Machida et al. 2002 VERTICAL AND MERIDIONAL DISTRIBUTIONS OF CO2		
707	https://ps.uci.edu/~rowlandblake/publications/177.pdf		
708			
709 710	Kenzie Mastroe 2019 <u>https://www.sheknows.com/living/articles/2086062/amazon-rainforest-fires-2019/</u>		
711	NOAA gr 2020 https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html		
712			
713	NOAA weekly 2020 https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html		
714			
715	Oxygen Levels 2019 <u>https://www.oxygenlevels.org/</u>		

717 Rogelj, J et al. 2018: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable 718 Development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global 719 warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 720 pathways, in the context of strengthening the global response to the threat of climate change, 721 sustainable development, and efforts to eradicate carbon dioxide. 722 723 C. Rose, et al 2015, The Characterization of Feces and Urine: A Review of the Literature to 724 Inform Advanced Treatment Technology, Crit Rev Environ Sci Technol. 2015 Sep 2; 45(17): 725 1827-1879. Max Roser 2015 Very Long-Term Perspective on Deforestation in Specific Regions 726 727 https://ourworldindata.org/forests 728 Cecile S. Rousseaux et al 2015 Global Modeling and Assimilation Office, NASA Goddard Space 729 730 SEDAC 2020 Center for International Earth Science Information Network - CIESIN - Columbia 731 732 University. 2018. Population Estimation Service, Version 3 (PES-v3). Palisades, NY: NASA 733 Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4DR2SK5 734 735 Hans R. Schneider et al. 1989 An Evaluation of the Role of Eddy Diffusion in Stratospheric Interactive Two-Dimensional Models https://doi.org/10.1175/1520-736 0469(1989)046<2079:AEOTRO>2.0.CO;2 737 738 739 Schwartz, 2018 Unrealized Global Temperature Increase: Implications of Current Uncertainties, 740 07 March 2018, DOI: (10.1002/2017JD028121) 741 Robert Scribbler 2020 https://robertscribbler.com/2016/08/05/carbon-sinks-in-crisis-it-looks-742 743 like-the-worlds-largest-rainforest-is-starting-to-bleed-greenhouse-gasses/

7	Λ	Λ
1	+	+

- 745 Takahashi 1997 Ocean Surface CO2
- 746 <u>https://www.pmel.noaa.gov/co2/story/LDEO+Surface+Ocean+CO2+Climatology</u>
- 747
- 748 Takahashi, Taro et al. 2008 Climatological mean and decadal change in surface ocean pCO2, and
- net sea-air CO₂ flux over the global oceans. <u>https://doi.org/10.1016/j.dsr2.2008.12.009</u>
- 750 Welty et al, 1984 Fundamentals of Momentum Heat and Mass transfer.
- 751 <u>http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=4049&itemId=0470128682</u>
- 752
- 753 World Economic Forum Jan 2020. <u>https://www.weforum.org/agenda/2020/01/one-trillion-</u>
- 754 <u>trees-world-economic-forum-launches-plan-to-help-nature-and-the-climate/</u>